An automated IoT visualization BIM platform for decision support in facilities management

Kai Ming Chang*, Ren-Jye Dzeng, Yi Ju Wu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

21 Scopus citations


Building information modeling (BIM) is the digital representation of physical and functional characteristics (such as geometry, spatial relationship, and geographic information) of a facility to support decisions during its life cycle. BIM has been extended beyond 3D geometrical representations in recent years, and now includes time as a fourth dimension and cost as a fifth dimension, as well as such other applications as virtual reality and augmented reality. The Internet of Things (IoT) has been increasingly applied in various products (smart homes, wearables) to enhance work productivity, living comfort, and entertainment. However, research addressing the integration of these two technologies (BIM and IoT) is still very limited, and has focused exclusively on the automatic transmission of sensor information to BIM models. This paper describes an attempt to represent and visualize sensor data in BIM with multiple perspectives in order to support complex decisions requiring interdisciplinary information. The study uses a university campus as an example and includes several scenarios, such as an auditorium with a dispersed audience and energy-saving options for rooms with different functions (mechanical/electrical equipment, classrooms, and laboratory). This paper also discusses the design of a common platform allowing communication among sensors with different protocols (Arduino, Raspberry Pi), the use of Dynamo to accept sensor data as input and automatically redraw visualized information in BIM, and how visualization may help in making energy-saving management decisions.

Original languageEnglish
Article number1086
JournalApplied Sciences (Switzerland)
Issue number7
StatePublished - 4 Jul 2018


  • Building information modeling
  • Dynamo
  • Environmental sensors
  • Industry foundation classes
  • Internet of Things
  • Smart campus

Fingerprint Dive into the research topics of 'An automated IoT visualization BIM platform for decision support in facilities management'. Together they form a unique fingerprint.

Cite this