Adsorption and dissociation of the HCl and Cl2 molecules on W(111) surface: A computational study

Hui Lung Chen, Shin Pon Ju*, Hsin Tsung Chen, Djamaladdin G. Musaev, Ming-Chang Lin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

The adsorption and dissociation of CI2 and HC1 molecules on W(l11) surface have been studied at the density functional theory (DFT) level in conjunction with the projector augmented wave (PAW) method. The molecular structures and surface-adsorbent interaction energies of W(11)/C1, W(l11)/H, W(l11)/C12, and W(l11)/HCl systems are predicted. In these studies, four adsorption sites, such as top (T), bridge (B), shallow (S), and deep (D) sites, of the W(lll) surface are considered. It is shown that the Cl2 and HC1 molecules adsorb to the W(l11) surface by the end-on manner (by their Cl - Cl or H - Cl bonds perpendicular to the W surface), and their dissociative adsorptions occur without intrinsic energy barriers and are exothermic by 80.46 and 53.72 kcal/mol, for Cl2 and HC1, respectively. Molecular dynamics studies show that the dissociation of Cl2 and HC1 molecules on the W(lll) surface occur in asymmetric fashion: at the beginning adsorbate forms a strong bond between one of their atoms and W centers, followed by the dissociation of the Cl - Cl (and/or H - Cl) bond and formation of the second bond between the atoms of adsorbate and the W center. For the CI2 molecule, both Cl atoms are preferred to adsorb at the top W centers. For the HC1 molecule, after the dissociation of the H - Cl bond the Cl atom still occupies the top adsorption site, but the H atom prefers to move to the position between the top and shallow W centers. The rate constants for the dissociative adsorption of Cl2 and HCl have been predicted with variational RRKM theory.

Original languageEnglish
Pages (from-to)12342-12348
Number of pages7
JournalJournal of Physical Chemistry C
Volume112
Issue number32
DOIs
StatePublished - 14 Aug 2008

Fingerprint Dive into the research topics of 'Adsorption and dissociation of the HCl and Cl<sub>2</sub> molecules on W(111) surface: A computational study'. Together they form a unique fingerprint.

Cite this