Ab initio MO and TST calculations for the rate constant of the HNO + NO2 → HONO + NO reaction

A. M. Mebel*, Ming-Chang Lin, K. Morokuma

*Corresponding author for this work

Research output: Contribution to journalArticle

11 Scopus citations

Abstract

Potential-energy surfaces for various channels of the HNO + NO2 reaction have been studied at the G2M(RCC,MP2) level, The calculations show that direct hydrogen abstraction leading to the NO + cis-HONO products should be the most significant reaction mechanism. Based on TST calculations of the rate constant, this channel is predicted to have an activation energy of 6-7 kcal/mol and an A factor of ca. 10-11 cm3 molecule-1 s-1 at ambient temperature, Direct H-abstraction giving NO + trans-HONO has a high barrier on PES and the formation of trans-HONO would rather occur by the addition/1,3-H shift mechanism via the HN(O)NO2 intermediate or by the secondary isomerization of cis-HONO. The formation of NO + HNO2 can take place by direct hydrogen transfer with the barrier of ca, 3 kcal/mol higher than that for the NO + cis-HONO channel. The formation of HNO2 by oxygen abstraction is predicted to be the least significant reaction channel. The rate constant calculated in the temperature range 300-5000 K for the lowest energy path producing NO + cis-HONO gave rise to ka = 7.34 · 10-20T2 64exp(-2034/T) cm3 molecule-1 S-1.

Original languageEnglish
Pages (from-to)729-736
Number of pages8
JournalInternational Journal of Chemical Kinetics
Volume30
Issue number10
DOIs
StatePublished - 1 Jan 1998

Fingerprint Dive into the research topics of 'Ab initio MO and TST calculations for the rate constant of the HNO + NO<sub>2</sub> → HONO + NO reaction'. Together they form a unique fingerprint.

  • Cite this