TY - JOUR
T1 - A two-stage sampling for robust feature matching
AU - Chou, Chih Chung
AU - Seo, Young Woo
AU - Wang, Chieh-Chih
PY - 2018/8/1
Y1 - 2018/8/1
N2 - For any visual feature-based SLAM (simultaneous localization and mapping) solutions, to estimate the relative camera motion between two images, it is necessary to find “correct” correspondence between features extracted from those images. Given a set of feature correspondents, one can use a n-point algorithm with robust estimation method, to produce the best estimate to the relative camera pose. The accuracy of a motion estimate is heavily dependent on the accuracy of the feature correspondence. Such a dependency is even more significant when features are extracted from the images of the scenes with drastic changes in viewpoints and illuminations and presence of occlusions. To make a feature matching robust to such challenging scenes, we propose a new feature matching method that incrementally chooses a five pairs of matched features for a full DoF (degree of freedom) camera motion estimation. In particular, at the first stage, we use our 2-point algorithm to estimate a camera motion and, at the second stage, use this estimated motion to choose three more matched features. In addition, we use, instead of the epipolar constraint, a planar constraint for more accurate outlier rejection. With this set of five matching features, we estimate a full DoF camera motion with scale ambiguity. Through the experiments with three, real-world data sets, our method demonstrates its effectiveness and robustness by successfully matching features (1) from the images of a night market where presence of frequent occlusions and varying illuminations, (2) from the images of a night market taken by a handheld camera and by the Google street view, and (3) from the images of a same location taken daytime and nighttime.
AB - For any visual feature-based SLAM (simultaneous localization and mapping) solutions, to estimate the relative camera motion between two images, it is necessary to find “correct” correspondence between features extracted from those images. Given a set of feature correspondents, one can use a n-point algorithm with robust estimation method, to produce the best estimate to the relative camera pose. The accuracy of a motion estimate is heavily dependent on the accuracy of the feature correspondence. Such a dependency is even more significant when features are extracted from the images of the scenes with drastic changes in viewpoints and illuminations and presence of occlusions. To make a feature matching robust to such challenging scenes, we propose a new feature matching method that incrementally chooses a five pairs of matched features for a full DoF (degree of freedom) camera motion estimation. In particular, at the first stage, we use our 2-point algorithm to estimate a camera motion and, at the second stage, use this estimated motion to choose three more matched features. In addition, we use, instead of the epipolar constraint, a planar constraint for more accurate outlier rejection. With this set of five matching features, we estimate a full DoF camera motion with scale ambiguity. Through the experiments with three, real-world data sets, our method demonstrates its effectiveness and robustness by successfully matching features (1) from the images of a night market where presence of frequent occlusions and varying illuminations, (2) from the images of a night market taken by a handheld camera and by the Google street view, and (3) from the images of a same location taken daytime and nighttime.
KW - mapping
KW - perception
UR - http://www.scopus.com/inward/record.url?scp=85042553168&partnerID=8YFLogxK
U2 - 10.1002/rob.21778
DO - 10.1002/rob.21778
M3 - Article
AN - SCOPUS:85042553168
VL - 35
SP - 779
EP - 801
JO - Journal of Field Robotics
JF - Journal of Field Robotics
SN - 1556-4959
IS - 5
ER -