A Texture Generation Approach for Detection of Novel Surface Defects

Yu Ting Kevin Lai, Jwu-Sheng Hu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Surface defect detection is challenging due to varying defect types and their novelties. Because of this, it is hard for algorithms to implement across datasets. Moreover, current automated optical inspection (AOI) machines cannot handle this novelty effectively. In this work, we develop a new method for surface defect detection based on generative models, which can detect novelty according to learned distributions. Experimental results on real industrial datasets show that the proposed method can successfully construct the surface texture pattern generator. By transforming the image through the generator to the corresponding latent space, the defects can be separated effectively without a tedious effort of annotation in a large amount of training data.

Original languageEnglish
Title of host publicationProceedings - 2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4357-4362
Number of pages6
ISBN (Electronic)9781538666500
DOIs
StatePublished - 16 Jan 2019
Event2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018 - Miyazaki, Japan
Duration: 7 Oct 201810 Oct 2018

Publication series

NameProceedings - 2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018

Conference

Conference2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018
CountryJapan
CityMiyazaki
Period7/10/1810/10/18

Keywords

  • automated optical inspection
  • generative adversarial networks
  • surface defect detection

Fingerprint Dive into the research topics of 'A Texture Generation Approach for Detection of Novel Surface Defects'. Together they form a unique fingerprint.

Cite this