A study of ultraviolet-curable organic/inorganic hybrid nanocomposites and their encapsulating applications for organic light-emitting diodes

Ming Hua Chang, Tsung-Eong Hsien*, Bohr Ran Huang, Huai En Hsieh, Fuh Shyang Juang, Yu Sheng Tsai, Mark O. Liu, Jen Lien Lin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

UV-curable organic/inorganic hybrid nanocomposites have been successfully synthesized with polymer monomers (tetramethoxysilane (TMOS)/3-glycidoxypropyl-trimethoxysilane (GPTMS)) nano-fillers (silica/alumina), curing agents (bisphenol A (BPA)), and photoinitiators (triaryl sulfonium hexafluoroantimonate (TSH)) by in situ polymerization. Their thermal stability, coefficient of thermal expansion (CTE), adhesion strength, and gas barrier capability have also been investigated with thermogravimetry analysis (TGA), thermomechanical analysis (TMA), micro-computer universal testing machine and moisture penetration tests. Experimental results indicate that nano-fillers are completely homogeneously dispersed in the polymer matrices and the increase of nano-fillers in the nanocomposites causes the raise of decomposition temperature (T d ) as well as gas resistance and the reduction of CTE as well as adhesion strength. Because lab-made organic/inorganic hybrid nanocomposites have been discovered to exhibit excellent gas barrier properties, we have also applied them for the encapsulation of organic light-emitting diodes (OLEDs) and flexible OLEDs. With lab-made nanocomposite d, the lifetimes of OLEDs and flexible OLEDs can be successfully lengthened to 92 and 36 h, respectively, whereas those of OLEDs and flexible OLEDs without encapsulation are 11 and 7 h, respectively.

Original languageEnglish
Pages (from-to)541-546
Number of pages6
JournalMaterials Chemistry and Physics
Volume115
Issue number2-3
DOIs
StatePublished - 15 Jun 2009

Keywords

  • Adhesion
  • Electrical properties
  • Polymers
  • Thermal properties

Fingerprint Dive into the research topics of 'A study of ultraviolet-curable organic/inorganic hybrid nanocomposites and their encapsulating applications for organic light-emitting diodes'. Together they form a unique fingerprint.

Cite this