A quasiclassical trajectory study of reactive scattering on an analytical potential energy surface for GeH2 system

Li Zhang, Chao Yong Zhu, Gang Jiang, Chaoyuan Zhu*, Z. H. Zhu

*Corresponding author for this work

Research output: Contribution to journalArticle

Abstract

A quasiclassical trajectory method was employed to study reaction Ge+H2 (v=0, j=0) and reverse reaction H+GeH (v=0, j=0) on an analytical potential energy surface obtained from simplified many-body expansion method with fitting to B3P86/CC-pVTZ calculations around a global minimum and a long-range van de Waals well plus spectroscopy data for diatomic molecules GeH and H2. Reaction probabilities from both reaction and reverse reaction were calculated. Dominant reaction is complex-forming reaction Ge+H2 (v=0, j=0) → GeH2, and its cross section is 10 times bigger than that of complex-forming reaction from the reverse reaction. There is no threshold effect for complex-forming reaction and the cross sections for both complex-forming reactions decrease with the increase of collision energy. Life time of complex is shown to be decreasing with increase of collision energy. Dominant reverse reaction is reaction H + GeH (v=0,j=0) → Ge+H2; the reaction probability decreases with the increase of collision energy and differential cross section shows that this reverse reaction has almost equal angular distribution at low collision energy and mostly forward scattering at high collision energy.

Original languageEnglish
Pages (from-to)147-163
Number of pages17
JournalJournal of Theoretical and Computational Chemistry
Volume10
Issue number2
DOIs
StatePublished - 1 Jan 2011

Keywords

  • differential cross section
  • Quasiclassical trajectory
  • reverse reaction
  • van de Waals well

Fingerprint Dive into the research topics of 'A quasiclassical trajectory study of reactive scattering on an analytical potential energy surface for GeH<sub>2</sub> system'. Together they form a unique fingerprint.

Cite this