A NRZ-OOK modulated 850-nm VCSEL with 54 Gb/s error-free data transmission

Ting Yu Huang, Junyi Qiu, Cheng Han Wu, Hao Tien Cheng, Milton Feng, Hao Chung Kuo, Chao Hsin Wu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

850 nm vertical-cavity surface-emitting lasers (VCSELs), the standard light sources in transmitters for short-range data centre interconnects, have been devoted to improving their high-speed characteristics to meet the rapidly growing data traffic demand. The high-speed characteristics have been investigated by the incorporation of InGaAs quantum wells (QWs) design to increase the modulation bandwidth[1], oxide-confined aperture to reduce threshold current[2], and benzocyclobutene (BCB) passivation layer to reduce parasitic capacitance[3]. In this report, we demonstrate the microwave characteristics of an 850 nm oxide-confined InGaAs quantum well (QW) VCSEL with an oxide aperture diameter and threshold current of 4.23-μm and 0.35 mA, which achieves the non-return-to-zero (NRZ) ON-OFF keying (OOK) modulation is performed with 54 Gb/s back-to-back error-free data transmission.

Original languageEnglish
Title of host publicationThe European Conference on Lasers and Electro-Optics, CLEO_Europe_2019
PublisherOSA - The Optical Society
ISBN (Electronic)9781557528209
StatePublished - 2019
EventThe European Conference on Lasers and Electro-Optics, CLEO_Europe_2019 - Munich, Germany
Duration: 23 Jun 201927 Jun 2019

Publication series

NameOptics InfoBase Conference Papers
VolumePart F140-CLEO_Europe 2019

Conference

ConferenceThe European Conference on Lasers and Electro-Optics, CLEO_Europe_2019
CountryGermany
CityMunich
Period23/06/1927/06/19

Fingerprint Dive into the research topics of 'A NRZ-OOK modulated 850-nm VCSEL with 54 Gb/s error-free data transmission'. Together they form a unique fingerprint.

Cite this