### Abstract

A t-packing is an ordered pair ( V, P ) where V is a v-set and P is a collection of k-subsets (blocks) of V such that each t-subset of V occurs in at most one block of P. If each t-subset of V occurs in exactly one block of P, then ( V, P ) is known as a Steiner ( t, k, v )-design. In this paper, we explore a novel use of t-packings to construct d-disjunct matrices.

Original language | English |
---|---|

Pages (from-to) | 1759-1762 |

Number of pages | 4 |

Journal | Discrete Applied Mathematics |

Volume | 154 |

Issue number | 12 |

DOIs | |

State | Published - 15 Jul 2006 |

### Keywords

- d-disjunct matrix
- t-packing

## Fingerprint Dive into the research topics of 'A novel use of t-packings to construct d-disjunct matrices'. Together they form a unique fingerprint.

## Cite this

Fu, H-L., & Hwang, F. K. (2006). A novel use of t-packings to construct d-disjunct matrices.

*Discrete Applied Mathematics*,*154*(12), 1759-1762. https://doi.org/10.1016/j.dam.2006.03.009