A multiple electrostatic electrodes torsion micromirror device with linear stepping angle effect

Jin-Chern Chiou*, Yu Chen Lin

*Corresponding author for this work

Research output: Contribution to journalArticle

24 Scopus citations

Abstract

Torsion micromirror devices that can achieve linear stepping angle effects play an important role in optical MEMS' applications. However, traditional torsion micromirror devices driven by a single electrostatic electrode have difficulty meeting this requirement due to their nonlinear angle-voltage transfer characteristics. In this regard, the concept of a multiple-electrode-controlled micromirror is proposed to eliminate this drawback. Through this novel design, linear stepping angles can be easily achieved by a set of linearly varied or constantly applied voltages. A simple mathematical model has been developed to predict the angle-voltage transfer characteristics of the proposed device and has been simulated with finite element simulations. The corresponding control strategies of this device, named the linear control strategy and the digital control strategy, are also proposed in this paper. The Cronos/MEMSCAP Multi-User MEMS Process (MUMPs) was used in conjunction with flip-chip bonding technology to fabricate the proposed torsion micromirror device. Experimental data indicates that the relative stepping angle error, between the fabricated device and the mathematical model, are within 5%.

Original languageEnglish
Pages (from-to)913-920
Number of pages8
JournalJournal of Microelectromechanical Systems
Volume12
Issue number6
DOIs
StatePublished - 1 Dec 2003

Keywords

  • Flip-chip bonding
  • Microelectromechanical systems (MEMS)
  • Micromirror
  • Multi-user MEMS process (MUMPs)
  • Multiple electrodes

Fingerprint Dive into the research topics of 'A multiple electrostatic electrodes torsion micromirror device with linear stepping angle effect'. Together they form a unique fingerprint.

  • Cite this