A Lattice-Partition Framework of Downlink Non-Orthogonal Multiple Access Without SIC

Min Qiu*, Yu-Chih Huang, Shin-Lin Shieh, Jinhong Yuan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Scopus citations


In this paper, a novel lattice-partition-based downlink non-orthogonal multiple access framework is proposed. This framework is motivated by recognizing the algebraic structure behind the previous scheme recently proposed by Shieh and Huang as a lattice partition in Z and is in fact a generalization of the scheme to any base lattice. The schemes in the proposed framework enjoy many desirable properties such as explicit and systematic design and discrete input distributions. Moreover, the proposed method only requires a limited knowledge of channel parameters. The rates achieved by the proposed scheme with any base lattice and with single-user decoding (i.e., without successive interference cancellation) are analyzed, and a universal upper bound on the gap to the multiuser capacity is obtained as a function of the normalized second moment of the base lattice. Since the proposed framework has a substantially larger design space than that of the previous scheme of Shieh and Huang whose base lattice is a 1-D lattice, one can easily find instances in larger dimensions that can provide superior performance. Design examples with the base lattices A(2), D-4, E-8, and Construction A lattices, respectively, are provided, and both theoretical and simulation results exhibit smaller gaps to the multiuser capacity as dimensions increase.

Original languageEnglish
Pages (from-to)2532-2546
Number of pages15
JournalIEEE Transactions on Communications
Issue number6
StatePublished - Jun 2018


  • Non-orthogonal multiple access (NOMA)
  • capacity region
  • lattices
  • linear deterministic model
  • 5G

Cite this