A gamma-based regression for winning price estimation in real-time bidding advertising

Wen Yuan Zhu*, Wen-Yueh Shih, Ying Hsuan Lee, Wen-Chih Peng, Jiun-Long Huang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

In Real-Time Bidding (RTB) advertising, estimating the winning price is an important task in evaluating the bid cost of bid requests in Demand-Side Platforms (DSPs). The prior works utilize censored linear regression for winning price estimation by considering both winning and losing bid records. In the traditional regression models, the winning price of each bid request is based on Gaussian distribution. However, the property of Gaussian distribution is not suitable for the winning price of each bid request, and it is hard to link the physical meaning of Gaussian distribution and the winning price. Therefore, in this paper, based on our observation and analysis, the winning price of each bid request is modeled by a unique gamma distribution with respect to its features. Then we propose a gamma-based censored linear regression with regularization for winning price estimation. To derive the parameters of our proposed complicated model based on bid records, our approach is to divide this hard problem into two sub-problems, which are easier to solve. In practice, we also provide four heuristic initial parameter settings that are able to greatly reduce the computation cost when deriving the parameters. The experimental results demonstrate that our approach is highly effective for estimating the winning price compared with the state-of-the-art approaches in three real datasets.

Original languageEnglish
Title of host publicationProceedings - 2017 IEEE International Conference on Big Data, Big Data 2017
EditorsJian-Yun Nie, Zoran Obradovic, Toyotaro Suzumura, Rumi Ghosh, Raghunath Nambiar, Chonggang Wang, Hui Zang, Ricardo Baeza-Yates, Ricardo Baeza-Yates, Xiaohua Hu, Jeremy Kepner, Alfredo Cuzzocrea, Jian Tang, Masashi Toyoda
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1610-1619
Number of pages10
ISBN (Electronic)9781538627143
DOIs
StatePublished - Dec 2017
Event5th IEEE International Conference on Big Data, Big Data 2017 - Boston, United States
Duration: 11 Dec 201714 Dec 2017

Publication series

NameProceedings - 2017 IEEE International Conference on Big Data, Big Data 2017
Volume2018-January

Conference

Conference5th IEEE International Conference on Big Data, Big Data 2017
CountryUnited States
CityBoston
Period11/12/1714/12/17

Fingerprint Dive into the research topics of 'A gamma-based regression for winning price estimation in real-time bidding advertising'. Together they form a unique fingerprint.

Cite this