A Domino Bootstrapping 12V GaN Driver for Driving an On-Chip 650V eGaN Power Switch for 96% High Efficiency

Hsuan Yu Chen, Wei Tin Lin, Cheng Hsiang Liao, Zong Yi Lin, Zhi Qiang Zhang, Yu Yung Kao, Ke-Horng Chen, Ying Hsi Lin, Shian Ru Lin, Tsung Yen Tsai

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

The proposed monolithically integrated 12V Gallium Nitride (GaN) driver utilizes a domino bootstrapping technique to an on-chip 650V enhancement mode Gallium Nitride (eGaN) in a GaN process. The proposed self-biasing loop (SBL) reduces the quiescent current to 120μA and achieves 96% high efficiency. Furthermore, derivative-voltage divided by derivative-time (dV/dt) controller with a dual current supply (DCS) technique is proposed to modulate the slew rate of eGaN HEMT from 53.3V/ns to 12.5V/ns.

Original languageEnglish
Title of host publication2020 IEEE Symposium on VLSI Circuits, VLSI Circuits 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages2
ISBN (Electronic)9781728199429
DOIs
StatePublished - Jun 2020
Event2020 IEEE Symposium on VLSI Circuits, VLSI Circuits 2020 - Honolulu, United States
Duration: 16 Jun 202019 Jun 2020

Publication series

NameIEEE Symposium on VLSI Circuits, Digest of Technical Papers
Volume2020-June

Conference

Conference2020 IEEE Symposium on VLSI Circuits, VLSI Circuits 2020
CountryUnited States
CityHonolulu
Period16/06/2019/06/20

Fingerprint Dive into the research topics of 'A Domino Bootstrapping 12V GaN Driver for Driving an On-Chip 650V eGaN Power Switch for 96% High Efficiency'. Together they form a unique fingerprint.

Cite this