A 802.15.3c/802.11ad dual mode phase noise cancellation for 60 GHz communication systems

Liang Yu Huang, Chia Yi Wu, Chun Yi Liu, Wei Chang Liu, Chih Feng Wu, Shyh-Jye Jou

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

In this paper, a phase noise cancellation (PNC) architecture is presented for 60 GHz communication systems. The BER performance is severely degraded by the non-ideal carrier frequency in 60 GHz bandwidth, which causes both common phase error (CPE) and residual carrier frequency offset (RCFO). The proposed simplified two-stage CPE algorithm solves the RCFO and common phase nose in the frequency domain and eliminates the constellation rotation on each sub-channel. Two-stage architecture together with deep pipelining technique achieves a high throughput rate. This PNC architecture has been implemented in a SC/OFDM Dual-Mode baseband receiver satisfying the requirements of the 802.15.3c/802.11ad standard with a 40 nm process. The proposed PNC is able to support 64QAM/16QAM for OFDM/SC mode, and can achieve up to 19.2 Giga-bit per second (Gbps) throughput rate at 400 MHz operating frequency with power consumption of 33 mW and area of 0.142 mm2.

Original languageEnglish
Title of host publication2015 International Symposium on VLSI Design, Automation and Test, VLSI-DAT 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781479962754
DOIs
StatePublished - 28 May 2015
Event2015 International Symposium on VLSI Design, Automation and Test, VLSI-DAT 2015 - Hsinchu, Taiwan
Duration: 27 Apr 201529 Apr 2015

Publication series

Name2015 International Symposium on VLSI Design, Automation and Test, VLSI-DAT 2015

Conference

Conference2015 International Symposium on VLSI Design, Automation and Test, VLSI-DAT 2015
CountryTaiwan
CityHsinchu
Period27/04/1529/04/15

Fingerprint Dive into the research topics of 'A 802.15.3c/802.11ad dual mode phase noise cancellation for 60 GHz communication systems'. Together they form a unique fingerprint.

Cite this